On the connectivity of extremal Ramsey graphs
نویسندگان
چکیده
An (r, b)-graph is a graph that contains no clique of size r and no independent set of size b. The set of extremal Ramsey graphs ERG(r, b) consists of all (r, b)-graphs with R(r, b) − 1 vertices, where R(r, b) is the classical Ramsey number. We show that any G ∈ ERG(r, b) is r − 1 vertex connected and 2r − 4 edge connected for r, b ≥ 3.
منابع مشابه
Eccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملChain hexagonal cacti: extremal with respect to the eccentric connectivity index
In this paper we present explicit formulas for the eccentric connectivity index of three classes of chain hexagonal cacti. Further, it is shown that the extremal chain hexagonal cacti with respect to the eccentric connectivity index belong to one of the considered types. Some open problems and possible directions of further research are mentioned in the concluding section.
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملAll Ramsey (2K2,C4)−Minimal Graphs
Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 41 شماره
صفحات -
تاریخ انتشار 2008